If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-10X-53=0
a = 1; b = -10; c = -53;
Δ = b2-4ac
Δ = -102-4·1·(-53)
Δ = 312
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{312}=\sqrt{4*78}=\sqrt{4}*\sqrt{78}=2\sqrt{78}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{78}}{2*1}=\frac{10-2\sqrt{78}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{78}}{2*1}=\frac{10+2\sqrt{78}}{2} $
| 9/10c+6/10=78/10 | | 3x+1+6=180 | | 3.2+0.3x=0.2=1.4 | | 6=21n | | 7(x+1)=-43-3x | | 6x-7=93 | | -3x+9=6-15 | | 6b^2-7b=24 | | (1.6x+3.3)^3=50 | | 1.2-5q=7.2 | | -7.9+q=33.7 | | 3/4x-9=-45 | | 2x-19=27 | | 22+7h=36 | | 2y+18=12-6y(y+7) | | 24x+350=950 | | 7-29/y=-4/y2 | | 12=2x-4.5. | | 9w-8=3 | | 64=h+3Q | | 23=76-(2z-4) | | 56+5/4k=96 | | 16=5x-20 | | |x+4|=3x-8 | | 73b=b+27 | | 20+15m=290 | | 6=5/4x+4 | | 6k-9=-75 | | 129=11b-15 | | 38b=4(4b-1)-48 | | A=-2+(n-1)-7 | | w/6+8=18 |